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Compressible Lifting Surface Theory
for Propeller Performance Calculation

Donald B. Hanson*
Hamilton Standard, Windsor Locks, Connecticut

A new integral equation for propeller steady aerodynamic analysis is presented that generalizes wing kernel
function methods to include effects of rotation and multiple blades. The kernel of the integral equation is valid
in a single form for the case, typical of propfans (advanced technology, many bladed propellers which operate at
high cruise Mach number), where the blade section relative speeds are subsonic at the roots and supersonic at the
tips. Within the restrictions of linearized theory, effects of blade interference, sweep, three dimensionality, and
compressibility are rigorously accounted for. Behavior of the kernel is studied and compared with well-known
results from wing and propeller wake theories. Methods for inverting the integral equation to compute lift
distribution and for determining vortex (or induced) drag are adapted from wing theory. Computed efficiency,
power, and spanwise power distribution are in excellent agreement with data for a propfan model with swept
biades tested at 0.8 cruise Mach number in a NASA wind tunnel.

Nomenclature

a =x/J

B =number of blades

By = chord-to-diameter ratio, = b/2r

Co =ambient sound speed

Cp =drag coefficient

C, =lift coefficient

Cs = shape factor for chordwise loading

Cp = power coefficient

AC, = coefficient of lift pressure

G =chordwise distribution factor for control point

i = spanwise control point index

1,,K, =modified Bessel functions

J = mode index for spanwise loading

J =advance ratio, 7 times flight speed/tip rotational
speed

J,, Y, =DBessel functions of first kind

K = wave number variable

K; = kernel function

K w =integrated kernel function

L, = vector of load coefficients

m = summation index

m = chordwise control point index

M = forward flight Mach number

n = chordwise load point index

rr =tip radius

R; = spanwise mode shape

w =induced downwash velocity

W, = downwash angle at uth control point

2,29 =control and load radius, respectively, (normalized
by ry)

Zn = normalized radius at centerbody

Zz,%» =lesser and greater, respectively, of z, and z

8 =V1- M

Ty, T = chordwise position of load and control points,
respectively, (divided by r;) measured in advance
direction at constant radius

r,,I'y =values of T’y at leading and trailing edges,
respectively

Presented as Paper 82-0020 at the AIAA 20th Aerospace Sciences

Meeting, Orlando, Fla., Jan. 12-14, 1982; received Aug. 1, 1983;

revision received June 4, 1984. Copyright © American Institute of
Aeronautics and Astronautics, Inc., 1984, All rights reserved.

*Principal Research Engineer, Design Department, Aircraft
Systems Division. Member AIAA.

7 = apparent efficiency

W = control point index

v =]oad point index

Po =ambient density

a,0, =V1+a?z? andV1+d? zg, respectively

Introduction

HE aerodynamic design of high-performance airplane

propellers has been accomplished over the years with a
variety of lifting line methods. Considering the geometry of a
typical conventional propeller, shown in Fig. 1, the lifting line
approach does not seem unreasonable. However, with the
emergence of the propfan, shown in Fig. 2, the simplifying
approximations of lifting line theory no longer appear
adequate. The blades have low aspect ratio, are strongly
swept, and produce a high disk loading because of their large
number. Furthermore, at a design cruise speed of Mach 0.8,
the section relative Mach numbers may vary from 0.85 in the
root area to 1.15 at the tip. Theory to analyze performance,
acoustics, and unstalled flutter of propellers with these
geometry and flow features was derived in Ref. 1. The present
paper is a study of the performance branch of the theory and
presents calculations for the SR-3 propfan. The work was
motivated not only by the need for better aerodynamic design
information but also by the requirement for reliable pressure
distribution predictions for structural and acoustic
calculations.

In its present form, the theory is compressible and
linearized. Linearization was justified in principle in Ref. 1 by
the fact that propfan blades satisfy textbook criteria for use of
linear theory at transonic speeds by virture of low thickness
ratio (2%) and low aspect ratio (3-4). Sweep is an additional
benefit in linearizing the flow. Initial results shown herein
indicate that linearization is justified, but final judgement
must await more detailed comparison with data.

Other organizations are developing nonlinear theories for
propeller steady aerodynamics, including a potential method
by Jou? and an Euler method by Bober et al.® A transonic
small-disturbance method is also in progress, but no
publications are yet available. Ultimately these should be
more accurate than any linearized method for transonic
blades; however, viscosity has not yet been included and
performance maps have not been generated for comparison
with test data. The method of this paper includes viscosity
simplistically in the form of profile drag looked up in tables
of two-dimensional airfoil test data. Agreement between test
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and predicted performance maps is believed to be the best
available at this time. Thus, in its present form, the method
can be used inexpensively to determine blade loading for
performance estimates, acoustic radiation calculation, and
structural purposes. It is not adequate by itself for detailed
airfoil section design. As in wing design practice, the linear
method may eventually be coupled with one of the more
advanced two-dimensional transonic codes. The three-
dimensional linear theory would be used to determine the
induction and interference, and the two-dimensional theory
would be used for details of chordwise distributions.

Another motivation for the present work is that the un-
steady version of the theory is needed for analysis of forced
response and unstalled flutter. This is a relatively simple
extension and currently is being programmed.

In the remainder of the paper, the lifting surface integral
equation is presented and the kernel function is studied in
detail. The lift and drag calculation methods are then
described and sample calculations are given.

Background

In Ref. 1 an integral equation for helicoidal lifting surfaces
was derived using the acceleration potential (or pressure
potential) method, which required the following steps: An
expression for the pressure disturbance caused by helically
convected thickness and loading sources was developed using
the linear acoustic wave equation

1 8%p
V2p———t =0 1
LRy 1

with the free-space Green’s function. Helicoidal reference
surfaces were defined for each blade so that the usual thin
blade approximation could be made and the flow tangency
boundary condition could be linearized with respect to them.
The helicoids are those swept out by the blade pitch change
axes (radii) as they rotate with the propeller and advance at
flight Mach number M. In order to establish the velocity
potential, the expression for the pressure disturbance (divided
by the ambient density to form the acceleraton potential) was
integrated along undisturbed streamlines from — oo to the
field (or control) point. Finally, this was differentiated
normal to the helicoidal surface to find the upwash caused by
the convected sources. In this paper, only the steady lift
source is considered; chordwise and spanwise force
components are neglected as in most wing lifting surface
theories. Theory for the thickness effect was derived in Ref. 1
but has not yet been included in aerodynamic calculations.
This restricts the current blade pressure predictions to the
difference between upper and lower surface pressures. This
blade loading is adequate for structural, acoustic, and
induced-drag purposes. However, the upper and lower
surface pressures cannot be studied separately.

The integral equation giving the upwash angle induced by
the blade pressure distribution is

; arp

a;(T,z) =tane; = S SF AC,(T,z5) K, (T',z;T,25)dIlydz,
zp JTL

2

where AC,, is the distribution over the blade surface area of
the coefficient of lift pressure

AC, =AP/ (YpoU3) 3

based on local section helical velocity U, =c,Mo,. K, is the
kernel function (or influence coefficient) which gives the
induced upwash at the point I, z due to a unit load at the
point T'y, z,. The blade-fixed streamwise and radial coor-
dinates I' and z shown in Fig. 3 are normalized by the
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Fig. 1 Conventional propeller with high aspect ratio blades.

Fig.2 Propfan propulsor, model SR-3.

@ CONTROL
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Fig. 3 Source and control
point coordinates I' and 'y are
measured at constant radius
along advance helix.
ﬁ..

propeller tip radius 7y and the zero subscripts denote source
coordinates. I' represents distance in the streamwise (or
chordwise) direction along an advance helix and is measured
at constant radius. (The I" and z coordinates are nonor-
thogonal because lines of constant I' are not radial except for
I'=0. As discussed in Ref. 1, this system is desirable and leads
to correct results.) For mathematical purposes, the function
AC, (T, zp) is considered to be defined, but equal to zero for
values of T'; less than the leading-edge value I'; and greater
than the trailing-edge value I';. This convention eliminates
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some Heaviside step functions that would otherwise appear
later in the paper.

The boundary condition to be satisfied is that the flow be
tangent to the blade camber surfaces. In terms of Eq. (2), this
means, for the analysis problem, that a pressure distribution
must be found that induces flow angles equal to the slopes of

the blade section camber lines as measured from the helicoidal \—j /
reference surface. This requires inversion of the integral

equation as discussed later. In principle, Eq. (2) could also be g

used in the direct sense to find the camber surface /

corresponding to a desired pressure distribution. This is BOUND m

TRAILING
VORTICES

usually known as the design problem and has not yet been vor
pursued.
As written, Eq. (2) could apply to any lifting surface
provided the appropriate kernel is supplied. For wings, the
kernels are well known*:

1 I'-T
Koing = [+ s |for M<1
81(z—2,) V(T =T4)? +8%(z—2)
(4a) Fig.4 Horseshoe vortex flowfield.
1 r-r
wing = 2[ 7 02 2] forM<1
4m(z=20)? LV(T=T)? +8% (z2—2)
(4b)

(For M >1, the kernel is taken to be zero when the radicand is negative, i.c., ahead of Mach cones.)

Because of the second-order singularity (z—z,) ~?, integrals of Eqs. (4a) and (4b) must be interpreted in the Mangler sense, i.e.,
as the finite part of an infinite integral.® The corresponding kernel for propellers was derived in Ref. 1. After conversion to
nondimensional variables, the kernel becomes

B ¢ oo r r
KL-_-Z—”Z;-”;Z—S k]o(aBz<k)K0(aBz>k)sin[a(— —l)k]dk
4o 0 o 0Oy
B, ¢
+—2 Emzlmg(mBaz<)K,,,B(mBaz>)
47ngZ m=1
B¢ = 1 . I T
—m m=1m2S—°° % [@®z3(k—1)—11[a’Z (k—1)~1] (JY),,,Bsm[mBa(; —;—Z)k]dk
B oy PN A AR r T
- z — ]y — 2,2 (kb ]Y — ~_ 2o
el ML §,,(,+M) ¢ [ =) =11 @2 (k=1) =11 (J7) ppcos[mBa (- - V| ©)
where
(JT) 5 =T g [MBazgNM?Pk? = (k—1)2 [J g | mBazNM? k? — (k—1)? ] (6a)
and
. S 1 ]
(JY) g =Jmp [mBaz ~NM2K2— (k—1)?1Y 5 [mBaz - NM?k? — (k—1)?] for-— =k=——
e S 1
-2 g [mBaz N (k—1)2 —M?k? 1K 5 [mBaz -~ (k—1)? —M?K? ] forlklzm (6b)
™

Note in the third term of the kernel that the integrand changes form at k= 1/(1 + M) and at 1/(1 — M) where M?k? — (k—1)? goes
to zero. It happens that the behavior of J,,5 and Y, for zero argument is such that (JY),,p is continuous and smooth at these
points.

As written, Eq. (5) applies for any subsonic flight Mach number M and any advance ratio J#0. For propfans, combinations of
M and J occur which lead to section-relative (helical) speeds that are subsonic at the blade roots and supersonic at the tips.
Equation (5) has the same form for source and control points in either the subsonic or supersonic regions.

Behavior of Kernel Function

Before developing a method for inverting Eq. (2), it is important to understand the behavior of the kernel function in some
detail. Accordingly, this section is devoted to a study of the various terms in Eq. (5) so as to illustrate its behavior near singularities
and in the far wake. Also, some computed values of K; are given to compare its behavior to that of the wing kernel and illustrate
effects of compressibility and distributed chord (as opposed to a lifting line).
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Properties of Individual Terms

Equation (5) expresses the kernel function as the sum of
four terms whose dependence on the streamwise coordinate I’
is explicitly shown. The m summations came from a Fourier
series in the circumferential angle. The first term in Eq. (5) is
related to the axial induction and has no analog in wing
theory.

The second term is analogous to the term 1/8w(z—2z,)? in
the wing kernel [Egs. (4)] in that it does not depend on the
streamwise variable and does not include compressibility
effects (i.e., neither the Mach number nor the Prandtl-Glauert
factor B appears). Furthermore, it can be shown that the
leading singularity in the second term is exactly 1/8w(z—
Zo) 2.

By noting that sin(kx)/k behaves as a delta function for
large x, it can be shown that the third term is exactly equal to
the second term for I'— —oo. This mimics the behavior of

(0 —=T)/N (T =T,)? +B? (z—2z,)? in the wing kernel.
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Fig. 5 Wing and propeller kernel functions compared with load and
control points close together.
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The fourth term is even in (I'/o —T'y/ 6,) and also decays far
upstream and downstream. It has no analog in the subsonic
wing kernel of Eq. (4a), which contains only terms that are
constant and odd with respect to I'—T',. However, this term is
required to mimic the behavior of the supersonic wing kernel,
where the upwash pattern is shifted back along Mach lines.
Note that this term is zero for incompressible flow because the
integration range 1/(1 + M) <k < 1/(1 — M) vanishes.

Computed Kernel Function Trends

The general behavior of the kernel described above in
analytical terms will now be demonstrated with numerical
calculations of Eq. (5). Despite the formidable appearance of

10— . PROPELLER
KERNEL
x /—’——
L -_
o —
-
N o5~ -
N
g -, WING KERNEL
§ -
,/
- - M=0.3
o I I ] J
~0.2 -0.1 o 0.1 0.2
1.5p0—
LOAD POINT PROPELLER
KERNEL

10— 4. -0 CONTROL
X POINT
«
=]
E Jo= -
— M = . //
s B =
o.5f—
WING KERNEL
]
-0.2 ~0.1 ) 0.1 0.2

CHORDWISE DISTANCE/TIP RADIUS, I’

Fig. 6 Wing and propeller kernels compared with load and control
points further apart.
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Fig. 7 Kernel calculation for point loads showing effects of blade
interference. Compare with Fig. 5, which was calculated for B=1.
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Fig.8 Smoothing of the induced field when load is distributed rather
than concentrated at a point. :

this function, it can be computed efficiently by taking ad-
vantage of two facts. First, there are asymptotic forms of the
Bessel functions that can be subtracted from various terms in
Eq. (5) to accelerate convergence of the sums and integrals.
When these forms are added back, they can be integrated and
summed analytically. Second, the integrals in Eq. (5) are
Fourier sine and cosine transforms in the streamwise coor-
dinate (I'(o—T"y/0y). Thus, by using fast Fourier transform
algorithms, the entire curve of K; vs (I'’0—Ty/0,) can be
generated as an array in one pass. The curves in this section
are presented for load points at (or centered at) [, =0.

Because the radial integration has not yet been performed,
the kernel function represents the flowfield of the horseshoe
vortex sketched in Fig. 4 whose bound section has collapsed to
zero length. Figure S demonstrates that the kernel for a one-
bladed propeller is similar to the wing kernels for control (or
field) points close to the load (or source) point. The in-
compressible calculation, at the top in the figure, shows the
smooth upwash behavior expected from Eq. (4a). It also
exhibits the familiar property that the induced flow at the
source point is 2 and final wake value. The compressible
flow condition, represented at the bottom of Fig. 5, is similar
to the design point for the SR-3 propfan shown in Fig. 2. The
wing kernel from Eq. (4b) shows a square-root singularity at
the Mach wave and zero induction ahead of the Mach wave,
The propeller kernel behaves similarly except that it does not
quite equal zero ahead of the Mach cone. Note that it was
necessary to use different formulas for the wing kernel in
subsonic and supersonic flow; however, the propeller kernel
was calculated with the same formula for both portions of
Fig. 5.

From the results shown in Fig. 5, it might be tempting to
use the wing kernel for propeller calculations. However, this
would not be satisfactory for several reasons. First, the mag-
nitudes of curves in Fig. 5 are dominated by the (z—z4) =7
singularity. When this singularity is integrated out, it
produces an effect roughly equal in magnitude to that of the
underlying nonsingular terms. Other reasons are given in the
next two figures. Figure 6 shows, for source and control
points further apart, that the wing and propeller kernels are
decidedly different. Also, blade interference effects, shown in
Fig. 7, have a powerful effect at high Mach numbers.

Figure 7 was computed for a point load, which is useful for
illustrating the mathematical behavior of K, . However, point
load representations are undersirable in supersonic flow
because of the rapid upwash variations that are predicted.
When the load is properly distributed over the chord, the
rapid variations are considerably smoothed out. This is easy
to demonstrate because K; can be integrated analytically over
a constant chordwise load. The analytical procedure will be
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Fig. 9 Effects on induced flowfield of compressibility and
distributed chord; M=0.8, J ==, z=0.65, z, =0.55.
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Fig. 10 Sweep back of induced field along Mach line.

described in the next section but the result for a chord-to-
diameter ratio of 0.15 is shown in Fig. 8. It can be seen that
the rapid chordwise variations caused by blade interference
and Mach waves are drastically reduced.

Figure 9 illustrates two interesting effects which relate to
the use of incompressible lifting line induction methods for
wide chord blades at high subsonic speeds. At the top are
curves calculated compressibly and incompressibly for a point
load (as in lifting line theory). As might be expected, the effect
of compressibility is to steepen the disturbance wavefront. A
lifting line theory would use the I'=0 value from the curve in
the induction calculation for an unswept blade. The figure
shows that incompressible theory would be perfectly adequate
for this case. However, for a swept blade, a K, value for I'>0
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would be needed. In this case, a substantial error arises from
use of incompressible theory. In the lower portion of Fig. 9,
the lifting surface effect (distributed chord vs lifting line) is
illustrated for the compressible condition above. It can be
seen that the effect of spreading out the source is to spread out
the induction. Again, good accuracy is obtained only for
unswept blades where the I'=0 value would be used.
Ironically, the compressibility and lifting surface effects tend
to compensate in the swept blade case. This may partly ex-
plain why the simplified induction methods currently in use
have been successful for design of first-generation propfan
models.

It has been stated' that, from a mathematical point of view,
the problem addressed here is subsonic and, therefore, there
can be no zones of silence in the flowfield. After all, an ‘ob-
server in front of the propeller will hear it, so long as the flight
speed is subsonic. But intuitively, we know that, near the load
point, disturbances must be swept back along Mach lines.
This behavior is illustrated in Fig. 10 by a chordwise-uniform
load distribution. It can be seen that the induction pattern
moves back with increasing Mach number, as required. As
was shown in Fig. 5, the ‘‘zone of silence’’ is not absolute.

Lift Calculation Method

Equation (2) cannot be inverted analytically so that resort
must be made to a numerical method analogous to those used
in wing theory. These procedures generally discretize the load
representation in some manner so that the equation can be
inverted by matrix methods. The flow tangency boundary
condition is enforced at a number of control points on the
blade surface equal to the number of load elements. Typical
load representations include constant pressure panels, con-
stant load line segments (analogous to horseshoe vortices in
vortex methods), and pressure mode series. For subsonic
wings, all of these have been used by various investigators
with good success. For supersonic flow, greater care must be
taken because discrete load elements induce flow distributions
that fluctuate rapidly near Mach lines from the source edges.
This leads to calculated results that can be abnormally sen-
sitive to control point location. Some supersonic wing
methods are based on special chordwise modes whose shapes
are calculated using wing geometries where exact solutions are
available. Since there are no such solutions for propellers, it

/7 [ /

z /7 /7 /7 /

AT
4

CONTROL POINTS
AT 3/4 CHORD
OF EACH PANEL

LOAD LINES
AT 1/4A CHORD
OF EACH PANEL

SPANWISE PANELS
DIVIDED BY CONSTANT
PERCENT CHORD LINES

Fig. 11 Load discretization method and control point location.
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was felt that the first load representation should be general
with respect to chordwise and spanwise variation to allow it to
adjust for features such as blade interference and tip effects.
Also, the representation had to have no edges or corners
(except at the tip) that would lead to the control point sen-
sitivity mentioned above. The system arrived at is shown in
Fig. 11. The blade surface is divided into a number of
spanwise panels whose widths are a constant percentage of the
local chord. A lift force distribution is centered at the one-
quarter chord of each of the panels and control regions are
centered at the three-quarter chord point of each panel. The
spanwise load variation is given by a series, each term of
which R; is continuous and varies as wing loading at the tip:

R,=zN1-2} @)

The lift elements are not concentrated on lines but are
distributed somewhat in the chordwise direction with a
Gaussian smearing function that provides a more realistic
pressure variation and helps converge the integrals in the
kernel function more rapidly. Similarly, flow tangency is
enforced, not at a point, but in an average sense over a
chordwise region centered at the three-quarter chord points of
the panels. This verbal description will be made specific with
the mathematical description below.

In the following paragraphs, the integral equation [Eq.
(2)] will be approximated in discrete form as

w,= YLK (8)

where the K, are integrated kernel function elements, W,
downwash angles computed at the control points, and L, load
coefficients to be found by inverting the matrix of K,,. To
keep track of the various control and load elements, the index
system given below was adopted.

Control points:

radii z=z;; i=12,...,NSM

chordwise stations TI'=Tj;; m=12,...,NCP

Load indices:

radial modes Ri(z9); j=1,2,...,NSM

chordwise locations I'y=Ty;; #A=12,...,NCP

where NCP is the number of chordwise panels and NSM the
number of spanwise modes. Thus, load and control point
indices that combine chordwise and spanwise effects for Eq.
(8) are:

u=(i—I)NCP+m=1,2,..., NCP-NSM )

v=(—1)NCP+n=1,2,---,NCP-NSM (10)

The lift pressure distribution for Eq. (1) now can be written
as

AC,(Tp.zp) = Y, L,R;(29)Cyi(To, 2p) 1)

Ji

where C,; are chordwise shape factors whose amplitudes will
be chosen for normalization: {C;dI'y = 1.

To establish the detailed form of Eq. (8), we define the
Gaussian weighting function which centers the control region
atT';:

22 42
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and operate on both sides of Eq. (2) as follows:

Wi (2) =§G (T,2) ; (I,2)dl )
:”Acp (FU)ZO)IG,‘” (F,Z)KL (I"Z’FO’Z()) dFdF()dZ()

Then the load description of Eq. (11) is inserted into Eq. (13)
and the control point radii, z=z;, are selected to give

W)= 5 LRI Kns (@nzo)dzy  (14)
i
where
Kini (21,20) =K (T, 2T4,20) G, (1,2;) C5 (T, 20 ) dTpdDl
(15)

And finally, by identifying W, = W}, (z;), we arrive at Eq. (8)
with

_ !
K= Ry (20) K (170)dzg (16)
h

With a Gaussian load distribution function

NI 402

Cﬁ(Fo,ZO):A_OﬁeXp[_A_(Z) (I‘0~I‘0,-,)2] a7

the double integration of Eq. (15) can be done analytically.
The result is
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Fig. 13 Lift pressure prediction at SR-3 design poims; M=0.8,
J=3.057, Cp =1.695.
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and A, and A are the widths at the one-half amplitude points
of the Gaussian functions C; and G,.

The radial integration of Eq. (16) is accomplished in a
fashion similar to the spanwise integrals in many existing wing
methods. As shown in Fig. 12, the integration range is divided
into three ranges, one of which contains the singularity at
Zp=2;. In the nonsingular regions, the integration is per-
formed using a trapezoidal method with step sizes equal to
1% of the tip radius. Integration through the singular region
is performed accurately by exploiting the exact form of the
singularity that can be derived from Bessel function asymp-
totic forms. The singular part of the kernel is integrated using
the 10-point Lagrange scheme given by Cunningham?® for the
(z—2z¢)~? term and the corresponding 10-point form for the

Drag and Efficiency

The theory presented above predicts lift forces acting
normal to the local direction of motion. Since this condition
by itself would require zero work, the various drag com-
ponents now must be considered

In analogy with wing theory, drag and lift coefficients in
this paper refer to a resolution of forces parallel and per-
pendicular to the local direction of motion. However, to
compute propeller thrust and power, forces must be resolved
into thrust and torque components. This gives the usual
equations’ for elements of thrust coefficient C; and power
coefficient Cp which, in the present notation, are

dc, 1 c,
= . Bo/’B ( —m) 21
Gz 4Bl BoCa @
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dc, 1 c,
= BeFB,C,a <1+ —) 2
dz 40 Potrariirar s (22)

where Cj, is the section drag coefficient (to be discussed
below) including all drag components. Thrust and power
coefficients are computed by integrating Egs. (21) and (22)
over the radius.

Apparent efficiency as given by

1=(Cr/Cp)J (23)

includes the effect on Cy of the flow retardation caused by the
nacelle. Note that for Cp, =0, the above equations give p=1.
Drag is expressed as the sum of three components:

a=(@) (@) (@), e

where the subscripts denote friction drag, wave drag, and
vortex (or induced) drag, respectively. The current treatment
of these terms is as follows.

Friction drag is looked up in two-dimensional airfoil tables
as a function of C, with section camber, thickness, and a
Mach number adjusted via simple sweep theory. Wave drag is
given by the radiated acoustic energy. But, since experimental
data for propfans with swept blades shows the acoustic power
to be a negligible fraction of shaft power, wave drag is
neglected in the calculations below.

Vortex drag is computed by adapting methods given by
Ashley and Landahl® for wings at subsonic and supersonic
speeds where the lift force acts normal to the flight direction.
For propellers, this force acts normal to the advance helix and
produces a trailing vortex system as a secondary effect. The
associated drag (drag due to lift) is computed by determining
the kinetic energy per unit length of the far wake. This ap-
proach is ideal for propfans because the kinetic energy in-
tegral for the far wake

o

2 vortex sheets

T=— A¢ wds (25)

is exactly the same for subsonic and supersonic blade section
speeds. The analogous result for subsonic and supersonic
wings is well known (see, for example, Ref. 5, pp. 136 and
175). In Eq. (25), the jump in velocity potential A¢ across a
vortex sheet is simply the circulation at the corresponding
radius on the blade determined by the lift calculation method
of the preceding section. w is the velocity induced normal to
the vortex sheet. Evaluation of Eq. (25) for helicoidal sheets
proceeds in the same fashion as for wing theory and leads to
the same result.

C / 1
L v

The downwash angle in the far wake is computed from Eq.
(2) with the far wake form of the kernel, which, as noted
above, is just twice the second term in Eq. (5).

By combining these equations and recognizing that {AC,
dI'=2B,C,, we find

C
(A(;%)V:—SZ ZBDCL47(-Z0Z E m I,nB(mBaZ<)

m=1

XKmB (mBaZ> )dZ() (27)

As with the Goldstein propeller theory,® Egs. (26) and (27)
relate induced velocities and blade loading. The Goldstein
theory gives the loading for only the optimum case—constant
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axial induction along the span. The present theory is more
general; it gives the induction distribution for any loading. To
verify the theory, Eq. (27) was evaluated with a Golds:ein
optimum loading for B,C;. The induction matched Gold-
stein’s.

In summary, propeller drag and efficiency are computed
using Egs. (21-24) and (27) given the C, distribution obtained
from Eq. (14). The radial integration is handled with the
methods described at the end of -the previous section. In
particular, singularities in the integrand of Eq. (27) are in-
tegrated using exact sums of the asymptotic forms of the
Bessel functions. The nonsingular terms are integrated
numerically.

Lift and Performance Calculations

The condition chosen for calculating the distribution of lift
pressure was the design point for the SR-3 propfan (shown in
Fig. 2) which was tested in the 8 X6 ft wind tunnel at NASA
Lewis.® The design point was for a cruise Mach number of
0.8, an advance ratio J=3.057, and a power coefficient
Cp=1.695. This exact point was never tested but crossplots of
nearby data points indicate that the desired C, would have
been achieved by setting blade angle to 61.7 deg. To establish
the boundary conditions for program inpuf, a finite element
structural model of the blade was stored in the computer
system. This was ‘‘rotated’” about the pitch change axis to a
blade angle of 61.7 deg and “‘cut’’ by 20 concentric cylinders
with radii up to the tip radius. The resulting airfoil sections
were then unwraped (or laid out flat), the camber lines were
constructed, and their slopes were measured with respect to
the advance helicoid. This gave the boundary conditions, w,
in Eq. (8), except for an adjustment required for blockage
caused by the spinner, centerbody, and nacelle. The blockage
was computed with a compressible streamline curvature code,
converted to effective changes in air angles, and added to w,.
The blockage effectively changed the section incidence angles
from 2.4 deg at the root to — 1.0 deg at the tip. Also, an
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Fig. 14 Comparison of experimental and theoretical power
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estimate of blade twist change due to dynamic effects was
used to modify the blade angle input.

For the calculations, five panels were selected as shown in
Fig. 11 with control areas at 7 radii: z=0.35, 0.45,...,0.95.
This gave a total of 35 control areas which were centered at
the three-quarter chord points of the panels. Loads were
distributed along the one-quarter chord points of the panels
and were described by seven terms of the series given in Eq.
(7). As described in conjunction with Eqgs. (12) and (17), both
the control and load regions are smeared in the chordwise
direction by amounts corresponding to one-quarter of a panel
width.

The computed distribution of 1ift pressure is shown in Fig.
13. Chordwise distributions are shown to be fairly flat, as is
desired for both noise and performance.

Unfortunately, there are no pressure data to verify the
calculations shown in Fig. 13. The most detailed
measurements available® are from wakes behind the rotor
whose readings can be interpreted in terms of the radial
distribution of power coefficient dCp/dz. This distribution is
given in Fig. 14 for the test point nearest the SR-3 design
point. The agreement with test shown in Fig. 14 is very en-
couraging and indicates that spanwise load distributions can
be computed with some confidence with this method.
However, it must be noted for both Figs. 13 and 14 that the
overall blade angle was reduced in the calculations by 2 deg
from the test values to achieve the power measured in the test.

Finally, entire performance maps were generated and
compared with wind tunnel data. The sample shown in Fig. 15
for Mach 0.8 is in good agreement with data even over a range
of off-design conditions. Maps at M=0.45, 0.6, 0.7, and 0.85
showed similar agreement.

By taking advantage of fast Fourier methods and asymp-
totic forms for Bessel functions, computer time for the lifting
surface method has been reduced to a very acceptable level.
Computation of the lift distribution in Fig. 13 ran 8 min of
CPU time on an [BM 370 computer. Kernel function arrays
and inverse matrices can be stored so that new planforms (at
the same advance ratio, Mach number, and number of blades)
can be run for about 1 min of CPU time. Retwists and
recambers for the same planform run about 1 s.

Summary and Conclusions
A new lifting surface integral equation theory for propeller
steady aerodynamics has been presented that generalizes wing
kernel function theories to include effects of rotation and
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multiple blades. Within the limitations of linearization, it
accounts rigorously for effects of sweep, three dimen-
sionality, blade interference, and compressibility. The kernel
function is valid in a single form for the condition, typical of
propfans, where the blade section relative speeds are subsonic
at the roots and supersonic at the tips.

The kernel function was shown to exhibit the proper
behavior with respect to singularities and, in the far wake
limit, was found to include the classic Goldstein® results as a
special case. Although the kernel is a complicated expression,
it is convenient for analytical work because it can be in-
tegrated analytically in the chordwise direction. Spanwise
integrals can be done accurately because the singularity at the
load point has been extracted analytically.

The integral equation was inverted using a method that is
new but similar to those used in wing theory. Also, vortex (or
induced) drag is computed by a technique adapted from wake
methods well known in wing analysis. The theoretical per-
formance maps are in good agreement with data at flight
Mach numbers up to 0.85. Furthermore, the spanwise load
distribution compares well with values determined from
downstream wake measurements.
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